Anytime a robot manipulator is controlled via visual feedback, the transformation between the robot and camera frame must be known. However, in the case where cameras can only capture a portion of the robot manipulator in order to better perceive the environment being interacted with, there is greater sensitivity to errors in calibration of the base-to-camera transform. A secondary source of uncertainty during robotic control are inaccuracies in joint angle measurements which can be caused by biases in positioning and complex transmission effects such as backlash and cable stretch. In this work, we bring together these two sets of unknown parameters into a unified problem formulation when the kinematic chain is partially visible in the camera view. We prove that these parameters are non-identifiable implying that explicit estimation of them is infeasible. To overcome this, we derive a smaller set of parameters we call Lumped Error since it lumps together the errors of calibration and joint angle measurements. A particle filter method is presented and tested in simulation and on two real world robots to estimate the Lumped Error and show the efficiency of this parameter reduction.


翻译:机器人操纵器在任何时间都通过视觉反馈来控制,机器人和相机框架之间的转换必须为人所知。 但是,如果相机只能捕捉机器人操纵器的一部分,以便更好地了解正在互动的环境,则对基到相机转换的校准错误有更大的敏感性。 机器人控制过程中的第二个不确定性来源是联合角度测量中的不准确性,这种不准确性可能是定位偏差和复合传输效应(如反斜和电缆拉伸)造成的。 在这项工作中,当感官链在相机视图中部分可见时,我们将这两组未知参数汇集到一个统一的问题配方中。 我们证明这些参数是无法辨别的,意味着对它们进行明确的估计是不可行的。 为了克服这一点,我们得出了一套我们称之为Lumped错误的更小的参数,因为它将校准和联合角度测量的错误拼凑在一起。 粒子过滤法在模拟中提出并测试了两个真正的世界机器人来估计Lumped错误并显示该参数降低的效率。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
最新《自动微分手册》77页pdf
专知会员服务
99+阅读 · 2020年6月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
9+阅读 · 2018年5月22日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
最新《自动微分手册》77页pdf
专知会员服务
99+阅读 · 2020年6月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Top
微信扫码咨询专知VIP会员