Underactuated legged robots depict highly nonlinear and complex dynamical behaviors that create significant challenges in accurately modeling system dynamics using both first principles and system identification approaches. Hence, it makes a more substantial challenge to design stabilizing controllers. If physical parameters on mathematical models have miscalibrations due to uncertainty in identifying and modeling processes, designed controllers could perform poorly or even result in unstable responses. Moreover, these parameters can certainly change-over-time due to operation and environmental conditions. In that respect, analogous to a living organism modifying its behavior in response to novel conditions, adapting/updating system parameters, such as spring constant, to compensate for modeling errors could provide the advantage of constructing a stable gait level controller without needing "exact" dynamical parameter values. This paper presents an online, model-based adaptive control approach for an underactuated planar hexapod robot's pronking behavior adopted from antelope species. We show through systematic simulation studies that the adaptive control policy is robust to high levels of parameter uncertainties compared to a non-adaptive model-based dead-beat controller.
翻译:触动不足的断腿机器人描述高度非线性和复杂的动态行为,这些动态行为在使用第一原理和系统识别方法精确模拟系统动态方面造成了重大挑战。 因此,它给设计稳定控制器带来了更重大的挑战。 如果数学模型的物理参数由于识别和建模过程的不确定性而出现校正错误, 设计出来的控制器可能表现不佳, 甚至导致反应不稳。 此外, 这些参数当然会因操作和环境条件而发生时间变化。 在这方面, 类似于活生物体根据新情况调整其行为, 调整/ 更新系统参数, 如春季常数, 以弥补模型错误, 可以提供在不需要“ exact” 动态参数值的情况下, 构建一个稳定的操控器级控制器的优势。 本文展示了一种在线的、 基于模型的适应控制方法, 用于未完全激活的平面六价机器人从蚂蚁物种中采取的行为。 我们通过系统模拟研究显示, 适应控制政策与高水平的参数不确定性相比, 而不是基于非适应型模型的死力控制器。