We provide nearly optimal algorithms for online facility location (OFL) with predictions. In OFL, $n$ demand points arrive in order and the algorithm must irrevocably assign each demand point to an open facility upon its arrival. The objective is to minimize the total connection costs from demand points to assigned facilities plus the facility opening cost. We further assume the algorithm is additionally given for each demand point $x_i$ a natural prediction $f_{x_i}^{\mathrm{pred}}$ which is supposed to be the facility $f_{x_i}^{\mathrm{opt}}$ that serves $x_i$ in the offline optimal solution. Our main result is an $O(\min\{\log {\frac{n\eta_\infty}{\mathrm{OPT}}}, \log{n} \})$-competitive algorithm where $\eta_\infty$ is the maximum prediction error (i.e., the distance between $f_{x_i}^{\mathrm{pred}}$ and $f_{x_i}^{\mathrm{opt}}$). Our algorithm overcomes the fundamental $\Omega(\frac{\log n}{\log \log n})$ lower bound of OFL (without predictions) when $\eta_\infty$ is small, and it still maintains $O(\log n)$ ratio even when $\eta_\infty$ is unbounded. Furthermore, our theoretical analysis is supported by empirical evaluations for the tradeoffs between $\eta_\infty$ and the competitive ratio on various real datasets of different types.
翻译:我们为在线设施的位置提供接近最佳的算法( OFL ) 。 在 OFL 中, 美元需求点按部就班, 算法必须在每个需求点到达时不可撤销地将每个需求点指定为开放设施。 目标是将需求点到指定设施的总连接成本降至最低, 以及设施开张成本。 我们还假设, 每一个需求点的算法将额外给出 $x_ i 美元 自然预测 $f_x_ i_ mathrm{ pred $, 这应该是在离线最佳解决方案中服务于 $x_ i 的 美元需求点。 我们的主要结果为 $( min_ log $\ n\\\\ deta\ int_ inty_ commathr{ { } 和设施开通价成本。 不同的运算法是最大预测错误( ef_ x_\\\\ i_ mattle_ rial_ rial{ $ n_ lax_ n_ lax_ laxal_ ladeal_ ladeal dal diesn_ liver_ laxn_ liver_ laxn_ laxn_ laxlation_ liver_ liver_ listal__ liver___ liver_______ ex__ lig___ exprisal______ exx______________ lig_ exal_ laxxxxxxxxxxxx___________ exs___________ exal______________________________________________________________________________________________________