Clustering is an important task with applications in many fields of computer science. We study the fully dynamic setting in which we want to maintain good clusters efficiently when input points (from a metric space) can be inserted and deleted. Many clustering problems are $\mathsf{APX}$-hard but admit polynomial time $O(1)$-approximation algorithms. Thus, it is a natural question whether we can maintain $O(1)$-approximate solutions for them in subpolynomial update time, against adaptive and oblivious adversaries. Only a few results are known that give partial answers to this question. There are dynamic algorithms for $k$-center, $k$-means, and $k$-median that maintain constant factor approximations in expected $\tilde{O}(k^{2})$ update time against an oblivious adversary. However, for these problems there are no algorithms known with an update time that is subpolynomial in $k$, and against an adaptive adversary there are even no (non-trivial) dynamic algorithms known at all. In this paper, we complete the picture of the question above for all these clustering problems. 1. We show that there is no fully dynamic $O(1)$-approximation algorithm for any of the classic clustering problems above with an update time in $n^{o(1)}h(k)$ against an adaptive adversary, for an arbitrary function $h$. 2. We give a lower bound of $\Omega(k)$ on the update time for each of the above problems, even against an oblivious adversary. 3. We give the first $O(1)$-approximate fully dynamic algorithms for $k$-sum-of-radii and for $k$-sum-of-diameters with expected update time of $\tilde{O}(k^{O(1)})$ against an oblivious adversary. 4. Finally, for $k$-center we present a fully dynamic $(6+\epsilon)$-approximation algorithm with an expected update time of $\tilde{O}(k)$ against an oblivious adversary.


翻译:集群是一个重要的任务, 包括许多计算机科学领域的应用。 我们研究完全动态环境, 也就是当输入点( 来自度空间) 可以插入和删除时, 我们想要保持良好的组群 。 许多组群问题是 $\ mathsf{APX} 硬的, 但却接受多式时间 $( 1) 美元( 美元) 的加速算法 。 因此, 自然的问题是, 我们是否能够在亚极更新时保持 $( 美元) 的近似解决方案, 对抗适应性和模糊的对手 。 只有少数结果能给这一问题提供部分答案。 有 美元( 美元) 美元( 美元) 的自动计算法, 美元( 美元) 美元( 美元) 的动态算法, 美元( 美元) 美元( 美元) 的快速更新 。 本文中, 我们无法完整地显示一个动态的图像 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
(OpenCV/Keras)用手势控制的计算器
机器学习研究会
3+阅读 · 2018年3月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
(OpenCV/Keras)用手势控制的计算器
机器学习研究会
3+阅读 · 2018年3月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员