In geostatistics, Gaussian random fields are often used to model heterogeneities of soil or subsurface parameters. To give spatial approximations of these random fields, they are discretized. Then, different techniques of geostatistical inversion are used to condition them on measurement data. Among these techniques, Markov chain Monte Carlo (MCMC) techniques stand out, because they yield asymptotically unbiased conditional realizations. However, standard Markov Chain Monte Carlo (MCMC) methods suffer the curse of dimensionality when refining the discretization. This means that their efficiency decreases rapidly with an increasing number of discretization cells. Several MCMC approaches have been developed such that the MCMC efficiency does not depend on the discretization of the random field. The pre-conditioned Crank Nicolson Markov Chain Monte Carlo (pCN-MCMC) and the sequential Gibbs (or block-Gibbs) sampling are two examples. In this paper, we will present a combination of the pCN-MCMC and the sequential Gibbs sampling. Our algorithm, the sequential pCN-MCMC, will depend on two tuning-parameters: the correlation parameter $\beta$ of the pCN approach and the block size $\kappa$ of the sequential Gibbs approach. The original pCN-MCMC and the Gibbs sampling algorithm are special cases of our method. We present an algorithm that automatically finds the best tuning-parameter combination ($\kappa$ and $\beta$) during the burn-in-phase of the algorithm, thus choosing the best possible hybrid between the two methods. In our test cases, we achieve a speedup factors of $1-5.5$ over pCN and of $1-6.5$ over Gibbs. Furthermore, we provide the MATLAB implementation of our method as open-source code.
翻译:在地理统计学中,Gausian随机字段常常用来模拟土壤或地下参数的异质性。为了给这些随机字段提供空间近似,它们被分解。然后,使用不同的地理统计反向技术来为它们设定测量数据。在这些技术中,Markov连锁的Monte Carlo(MC ) 技术非常突出,因为它们产生的是暂时的不带偏见的有条件的实现。然而,标准的Markov连锁 Monte Carlo(MC ) 方法在改进离散性时会受到维度的诅咒。这意味着它们的效率随着离散细胞数量的增加而迅速下降。已经开发了几个 ABMC 方法,使得 ABMC 效率不取决于随机字段的离异性。 事先修整的Crank Nicolson Markov 链 Monte Carlo(PCN-MC ) 和顺序布局(或块-Gibbs) 取样是两个例子。我们目前的PCN-MMC 和顺序的混合组合, 我们的算法、连续的PCN-CN MC COM-COM 5 和美元的基价价价的基价的基的基的基的基的基的基比 方法,将在两个基的基的基数中找到一个基的基数的基数的基的基的基的基的基的基数方法。