Neural implicit surface representations have recently emerged as popular alternative to explicit 3D object encodings, such as polygonal meshes, tabulated points, or voxels. While significant work has improved the geometric fidelity of these representations, much less attention is given to their final appearance. Traditional explicit object representations commonly couple the 3D shape data with auxiliary surface-mapped image data, such as diffuse color textures and fine-scale geometric details in normal maps that typically require a mapping of the 3D surface onto a plane, i.e., a surface parameterization; implicit representations, on the other hand, cannot be easily textured due to lack of configurable surface parameterization. Inspired by this digital content authoring methodology, we design a neural network architecture that implicitly encodes the underlying surface parameterization suitable for appearance data. As such, our model remains compatible with existing mesh-based digital content with appearance data. Motivated by recent work that overfits compact networks to individual 3D objects, we present a new weight-encoded neural implicit representation that extends the capability of neural implicit surfaces to enable various common and important applications of texture mapping. Our method outperforms reasonable baselines and state-of-the-art alternatives.


翻译:最近出现了明显的 3D 对象编码的流行替代品,如多边形模外、制表点或氧化物。虽然做了大量工作,提高了这些表示的几何精确度,但对最终外观的注意却少得多。传统的显性物体表示通常将3D 形状数据与辅助表面外观图像数据相配,例如普通地图中的分散色质和细度的几何细节,通常需要将3D 表面映射在平面上,即表面参数化;另一方面,由于缺少可调和的表面参数化,隐含的表示不能容易纹理。在这种数字内容创作方法的启发下,我们设计了一个神经网络结构,隐含地将适合外观数据的基本表面参数化编码。因此,我们的模型仍然与外观数据的现有以网状为基础的数字内容相容。由于最近的工作使3D 物体的紧凑网络过于适合,因此,我们提出了一个新的重度编码的内隐性表示表,扩大了内向表面的能力,从而扩大了我们合理的隐含表面能力,从而能够将各种共同和重要的文本的外观测量方法推出各种通用的基线和重要应用。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
53+阅读 · 2018年12月11日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员