Video game level generation based on machine learning (ML), in particular, deep generative models, has attracted attention as a technique to automate level generation. However, applications of existing ML-based level generations are mostly limited to tile-based level representation. When ML techniques are applied to game domains with non-tile-based level representation, such as Angry Birds, where objects in a level are specified by real-valued parameters, ML often fails to generate playable levels. In this study, we develop a deep-generative-model-based level generation for the game domain of Angry Birds. To overcome these drawbacks, we propose a sequential encoding of a level and process it as text data, whereas existing approaches employ a tile-based encoding and process it as an image. Experiments show that the proposed level generator drastically improves the stability and diversity of generated levels compared with existing approaches. We apply latent variable evolution with the proposed generator to control the feature of a generated level computed through an AI agent's play, while keeping the level stable and natural.


翻译:基于机器学习(ML),特别是深基因模型的视频游戏水平生成,已作为一种自动生成技术引起注意。然而,现有基于 ML 的代代的应用大多限于基于瓷基的级别代表。当ML 技术应用于非瓷基层次代表的游戏域时,例如安格里鸟,在一个级别上的物体由实际价值参数指定,ML往往无法生成可播放的级别。在这项研究中,我们为安格里鸟的游戏域开发了一种深基因模型级生成。为了克服这些缺陷,我们建议将一个级别相继编码,并将其处理成文本数据,而现有方法则使用基于瓷的编码和处理作为图像。实验显示,与现有方法相比,拟议的水平生成值的稳定性和多样性大大提高。我们与拟议生成器一起应用潜在的变量演化来控制通过AI 代理游戏计算产生的水平的特征,同时保持水平的稳定性和自然性。

0
下载
关闭预览

相关内容

愤怒的小鸟(游戏 | Angry Birds) 》是由Rovio Entertainment Ltd.开发的一款休闲益智类游戏,于2009年12月首发于iOS,而后在其他平台发行。
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
4+阅读 · 2019年9月5日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
3+阅读 · 2018年4月3日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员