Accelerated degradation testing (ADT) is an effective way to evaluate the reliability and lifetime of highly reliable products. Existing studies have shown that the degradation processes of some products are non-Markovian with long-range dependence due to the interaction with environments. Besides, the degradation processes of products from the same population generally vary from each other due to various uncertainties. These two aspects bring great difficulty for ADT modeling. In this paper, we propose an improved ADT model considering both long-range dependence and unit-to-unit variability. To be specific, fractional Brownian motion (FBM) is utilized to capture the long-range dependence in the degradation process. The unit-to-unit variability among multiple products is captured by a random variable in the degradation rate function. To ensure the accuracy of the parameter estimations, a novel statistical inference method based on expectation maximization (EM) algorithm is proposed, in which the maximization of the overall likelihood function is achieved. The effectiveness of the proposed method is fully verified by a simulation case and a microwave case. The results show that the proposed model is more suitable for ADT modeling and analysis than existing ADT models.
翻译:暂无翻译