Structure learning offers an expressive, versatile and explainable approach to causal and mechanistic modeling of complex biological data. We present wiseR, an open source application for learning, evaluating and deploying robust causal graphical models using graph neural networks and Bayesian networks. We demonstrate the utility of this application through application on for biomarker discovery in a COVID-19 clinical dataset.
翻译:结构学习为复杂的生物数据的因果和机械建模提供了一种直观、多功能和可解释的方法。我们提供了智慧R,这是一个开放源应用程序,用于利用图形神经网络和贝叶斯网络学习、评估和部署强有力的因果图形模型。我们通过在COVID-19临床数据集中应用生物标志发现来证明这一应用的效用。