We study population protocols, a model of distributed computing appropriate for modeling well-mixed chemical reaction networks and other physical systems where agents exchange information in pairwise interactions, but have no control over their schedule of interaction partners. The well-studied *majority* problem is that of determining in an initial population of $n$ agents, each with one of two opinions $A$ or $B$, whether there are more $A$, more $B$, or a tie. A *stable* protocol solves this problem with probability 1 by eventually entering a configuration in which all agents agree on a correct consensus decision of $A$, $B$, or $T$, from which the consensus cannot change. We describe a protocol that solves this problem using $O(\log n)$ states ($\log \log n + O(1)$ bits of memory) and optimal expected time $O(\log n)$. The number of states $O(\log n)$ is known to be optimal for the class of stable protocols that are "output dominant" and "monotone". These are two natural constraints satisfied by our protocol, making it state-optimal for that class. We use, and develop novel analysis of, a key technique called a "fixed resolution clock" due to Gasieniec, Stachowiak, and Uznanski, who showed a majority protocol using $O(\log n)$ time and states that has a positive probability of error. Our protocol is *nonuniform*: the transition function has the value $\left \lceil {\log n} \right \rceil$ encoded in it. We show that the protocol can be modified to be uniform, while increasing the state complexity to $\Theta(\log n \log \log n)$.
翻译:我们研究的是人口规程,一种适合模拟精密混合化学反应网络的分布式计算模型,以及其他物理系统,在这些系统中,代理商在对称互动中交换信息,但对其互动伙伴的日程表没有控制权。我们研究的*多数*问题是,在初始人群中确定一个美元代理商,每个代理商持有两种意见中的1美元或1美元或1美元,是否存在更多的A美元、更多的B美元或一条领带。一个nstable*协议解决了这个问题,概率1,最终进入一个配置,所有代理商在其中商定一个正确一致决定$、B$或美元,但不能改变其互动伙伴的日程表。我们描述的规程是用$(log n + O(1)美元 记忆) 来解决这个问题的规程, 美元(log n) 或一美元。我们知道, 美元(nz n) 协议的数量对于“ 美元” 稳定规程中“ 美元” 和“ 美元” 美元” 的正值最优化, 并且“ 美元” 数字” 。这是两个自然约束值, 而我们用协议的奥运算的奥的奥的奥的奥的奥的奥,, 显示它可以显示一个正值。