Colonoscopy is a gold standard procedure but is highly operator-dependent. Automated polyp segmentation, a precancerous precursor, can minimize missed rates and timely treatment of colon cancer at an early stage. Even though there are deep learning methods developed for this task, variability in polyp size can impact model training, thereby limiting it to the size attribute of the majority of samples in the training dataset that may provide sub-optimal results to differently sized polyps. In this work, we exploit size-related and polyp number-related features in the form of text attention during training. We introduce an auxiliary classification task to weight the text-based embedding that allows network to learn additional feature representations that can distinctly adapt to differently sized polyps and can adapt to cases with multiple polyps. Our experimental results demonstrate that these added text embeddings improve the overall performance of the model compared to state-of-the-art segmentation methods. We explore four different datasets and provide insights for size-specific improvements. Our proposed text-guided attention network (TGANet) can generalize well to variable-sized polyps in different datasets.
翻译:Colonoscopy是一种金式标准程序,但高度依赖操作程序。 自动聚变分解是一种先发制人,可以在早期阶段最大限度地减少遗漏率和及时治疗结肠癌。 尽管为这项任务开发了深层的学习方法,但聚积大小的变化会影响模型培训,从而将其限于培训数据集中大多数样本的大小属性,这些样本可能为不同尺寸的聚分解器提供亚最佳结果。在这项工作中,我们以文本关注的形式利用了与大小有关的和与聚苯数有关的特征。我们引入了一种辅助分类任务,以加权基于文本的嵌入方式,使网络能够学习能够明显适应不同尺寸聚苯乙烯的附加特征表示,并能够适应多个聚苯乙烯的情况。我们的实验结果表明,这些添加的文本嵌入会提高模型的总体性能,与最新分类法方法相比。 我们探索了四个不同的数据集,并为具体大小的改进提供洞察。 我们提议的文本引导注意网络(TGANet)可以将不同数据集的可变大小的聚谱化。