Meaning is the foundation stone of intercultural communication. Languages are continuously changing, and words shift their meanings for various reasons. Semantic divergence in related languages is a key concern of historical linguistics. In this paper we investigate semantic divergence across languages by measuring the semantic similarity of cognate sets in multiple languages. The method that we propose is based on cross-lingual word embeddings. In this paper we implement and evaluate our method on English and five Romance languages, but it can be extended easily to any language pair, requiring only large monolingual corpora for the involved languages and a small bilingual dictionary for the pair. This language-agnostic method facilitates a quantitative analysis of cognates divergence -- by computing degrees of semantic similarity between cognate pairs -- and provides insights for identifying false friends. As a second contribution, we formulate a straightforward method for detecting false friends, and introduce the notion of "soft false friend" and "hard false friend", as well as a measure of the degree of "falseness" of a false friends pair. Additionally, we propose an algorithm that can output suggestions for correcting false friends, which could result in a very helpful tool for language learning or translation.


翻译:意思是跨文化交流的基石。 语言正在不断改变, 语言会因各种原因改变其含义。 相关语言的语义差异是历史语言的主要关切。 在本文中, 我们通过测量多种语言的同源词组的语义相似性, 调查不同语言的语义差异。 我们建议的方法基于跨语言的词嵌入。 在本文中, 我们用英语和五种罗姆语言来实施和评估我们的方法, 但可以很容易地推广到任何一对语言, 只要求相关语言使用大片单语的团体, 和一对小段双语词典。 这种语言通识方法有助于量化差异分析, 通过计算同源配方之间的语义相似性, 并为识别假朋友提供洞察力。 作为第二个贡献, 我们制定一种简单的方法来探测假朋友, 并引入“ 软假朋友” 和“ 硬假朋友” 的概念, 以及一个衡量假朋友对“ 假朋友” 的程度的尺度。 此外, 我们提议一种算法, 可以输出纠正假朋友的建议, 其结果为非常有用的翻译工具。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月21日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关资讯
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员