Nowadays, Multi-purpose Messaging Mobile App (MMMA) has become increasingly prevalent. MMMAs attract fraudsters and some cybercriminals provide support for frauds via black market accounts (BMAs). Compared to fraudsters, BMAs are not directly involved in frauds and are more difficult to detect. This paper illustrates our BMA detection system SGRL (Self-supervised Graph Representation Learning) used in WeChat, a representative MMMA with over a billion users. We tailor Graph Neural Network and Graph Self-supervised Learning in SGRL for BMA detection. The workflow of SGRL contains a pretraining phase that utilizes structural information, node attribute information and available human knowledge, and a lightweight detection phase. In offline experiments, SGRL outperforms state-of-the-art methods by 16.06%-58.17% on offline evaluation measures. We deploy SGRL in the online environment to detect BMAs on the billion-scale WeChat graph, and it exceeds the alternative by 7.27% on the online evaluation measure. In conclusion, SGRL can alleviate label reliance, generalize well to unseen data, and effectively detect BMAs in WeChat.
翻译:目前,多用途传送移动工具(MMMA)日益普遍。MMMA吸引欺诈者和一些网络罪犯通过黑市账户(BMAs)为欺诈提供支持。与欺诈者相比,BMAs没有直接参与欺诈,而且更难检测。本文展示了在WeChat(一个拥有超过10亿用户的代表MMMA公司)使用的BMAS检测系统SGRL(自我监督的图形代表学习),这是MMMAA(一个有超过10亿用户的代表MMMA)使用的。我们为SGRL的图形神经网络和图形自我监督学习定制,以进行BMA的检测。SGRL工作流程包含一个培训前阶段,利用结构信息、节点属性信息和现有人类知识,以及轻量的检测阶段。在离线实验中,SGRL公司在离线评估措施上比最新工艺方法(SGRL)高出16.06%至58.17%。我们在网上环境中部署SGRAL,以在10亿规模的WHAT图上探测BMA,在网上评估措施上超过7.7%的替代方法。我们可以有效地检测到SGRAL,在BMA(SMAR)中可以有效地测量到一般数据。