Background. The bootComb R package allows researchers to derive confidence intervals with correct target coverage for arbitrary combinations of arbitrary numbers of independently estimated parameters. Previous versions (< 1.1.0) of bootComb used independent bootstrap sampling and required that the parameters themselves are independent - an unrealistic assumption in some real-world applications. Findings. Using Gaussian copulas to define the dependence between parameters, the bootComb package has been extended to allow for dependent parameters. Implications. The updated bootComb package can now handle cases of dependent parameters, with users specifying a correlation matrix defining the dependence structure. While in practice it may be difficult to know the exact dependence structure between parameters, `bootComb` allows running sensitivity analyses to assess the impact of parameter dependence on the resulting confidence interval for the combined parameter. Availability. bootComb is available from the Comprehensive R Archive Network (https://CRAN.R-project.org/package=bootComb).
翻译:背景。 靴子Comb R 软件包使研究人员能够获得信任间隔,对任意组合的任意数字独立估计参数的任意组合有正确的目标覆盖。 靴子Comb 以前的版本( < 1.1.0)使用了独立的靴子取样,要求参数本身是独立的----这是一些现实世界应用中不现实的假设。 发现。 使用高森相框来界定参数之间的依赖性,已经扩展了靴子Comb软件包,以允许有依赖性的参数。 影响。更新的靴子Comb软件包现在可以处理依赖性参数的情况,用户可以指定一个相关矩阵来界定依赖性结构。 虽然在实践中可能很难知道参数之间的确切依赖性结构,但“布特Comb”允许进行敏感度分析,以评估参数依赖性对综合参数信任期的影响。可用性。 靴Comb可从综合档案网络(https://CRAN.R-project.org/package=bootComb)查阅。