Traveling at constant velocity is the most efficient trajectory for most robotics applications. Unfortunately without accelerometer excitation, monocular Visual-Inertial Odometry (VIO) cannot observe scale and suffers severe error drift. This was the main motivation for incorporating a 1D laser range finder in the navigation system for NASA's Ingenuity Mars Helicopter. However, Ingenuity's simplified approach was limited to flat terrains. The current paper introduces a novel range measurement update model based on using facet constraints. The resulting range-VIO approach is no longer limited to flat scenes, but extends to any arbitrary structure for generic robotic applications. An important theoretical result shows that scale is no longer in the right nullspace of the observability matrix for zero or constant acceleration motion. In practical terms, this means that scale becomes observable under constant-velocity motion, which enables simple and robust autonomous operations over arbitrary terrain. Due to the small range finder footprint, range-VIO retains the minimal size, weight, and power attributes of VIO, with similar runtime. The benefits are evaluated on real flight data representative of common aerial robotics scenarios. Robustness is demonstrated using indoor stress data and fullstate ground truth. We release our software framework, called xVIO, as open source.


翻译:以恒定速度旅行是大多数机器人应用中最高效的轨道。 不幸的是,没有加速计振动,单镜视电离异度测量(VIO)无法观测比例尺并遭受严重误差漂移。这是将1D激光测距仪纳入美国航天局智能火星直升机导航系统的主要动力。然而,智能的简化方法仅限于平坦的地形。当前文件引入了基于使用表面限制的新颖的测距更新模型。由此产生的测距VIO方法不再局限于平坦场景,而是扩展到通用机器人应用的任何任意结构。一个重要的理论结果显示,在零或恒定加速运动的可观测矩阵的右空格中,比例表已不再是零或恒定加速运动的。从实际角度讲,这意味着在恒定速度运动下可以观测到,从而能够在任意的地形上进行简单和稳健健的自主操作。由于小测距测距定位的足迹,测距VIO保留了类似运行时间的最小尺寸、重量和功率属性。在实际飞行数据中评估了通用机器人应用的任意机器人应用结构的任意空间空间空间空间空间空间。 ROusustudestrutal laftex ex laftex exexexexexexexexexexexexexexex exexexexexexexexpressuestrutus ex

0
下载
关闭预览

相关内容

【干货书】'Mastering Go 第二版中文版',143页pdf
专知会员服务
47+阅读 · 2020年11月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Arxiv
1+阅读 · 2021年5月24日
Arxiv
0+阅读 · 2021年5月21日
VIP会员
相关资讯
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Top
微信扫码咨询专知VIP会员