Phosphorylation is central to numerous fundamental cellular processes, influencing the onset and progression of a variety of diseases. The correct identification of these phosphorylation sites is of great importance to unravel the intricate molecular mechanisms within cells and during viral infections, potentially leading to the discovery of new therapeutic targets. In this study, we introduce PTransIPs, a novel deep learning model for the identification of phosphorylation sites. PTransIPs treat amino acids within protein sequences as words, extracting unique encodings based on their type and sequential position. The model also incorporates embeddings from large pretrained protein models as additional data inputs. PTransIPS is further trained on a combination model of convolutional neural network with residual connections and Transformer model equipped with multi-head attention mechanisms. At last, the model outputs classification results through a fully connected layer. The results of independent testing reveal that PTransIPs outperforms existing state-of-the-art(SOTA) methods, achieving AUROCs of 0.9232 and 0.9660 for identifying phosphorylated S/T and Y sites respectively. In addition, ablation studies prove that pretrained model embeddings contribute to the performance of PTransIPs. Furthermore, PTransIPs has interpretable amino acid preference, visible training process and shows generalizability on other bioactivity classification tasks. To facilitate usage, our code and data are publicly accessible at \url{https://github.com/StatXzy7/PTransIPs}.
翻译:暂无翻译