A key requirement for graph neural networks is that they must process a graph in a way that does not depend on how the graph is described. Traditionally this has been taken to mean that a graph network must be equivariant to node permutations. Here we show that instead of equivariance, the more general concept of naturality is sufficient for a graph network to be well-defined, opening up a larger class of graph networks. We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks while being more flexible. We give one practical instantiation of a natural network on graphs which uses an equivariant message network parameterization, yielding good performance on several benchmarks.
翻译:图形神经网络的一个关键要求是,它们必须以一种不取决于如何描述图形的方式处理一个图形。 传统上,这被理解为意味着图形网络必须具有等同性, 与节点变异。 我们在这里显示, 更普遍的自然性概念非异性, 足以使图形网络得到明确界定, 打开更大的图表网络类别。 我们定义了全球和本地的自然图形网络, 后者与传统信息传递的图像神经网络一样可扩展, 同时又更灵活。 我们给图形上一个自然网络提供一种实际的即时化, 该图使用等异性信息网络的参数化, 在几个基准上产生良好的性能 。