We present a streaming algorithm for the vertex connectivity problem in dynamic streams with a (nearly) optimal space bound: for any $n$-vertex graph $G$ and any integer $k \geq 1$, our algorithm with high probability outputs whether or not $G$ is $k$-vertex-connected in a single pass using $\widetilde{O}(k n)$ space. Our upper bound matches the known $\Omega(k n)$ lower bound for this problem even in insertion-only streams -- which we extend to multi-pass algorithms in this paper -- and closes one of the last remaining gaps in our understanding of dynamic versus insertion-only streams. Our result is obtained via a novel analysis of the previous best dynamic streaming algorithm of Guha, McGregor, and Tench [PODS 2015] who obtained an $\widetilde{O}(k^2 n)$ space algorithm for this problem. This also gives a model-independent algorithm for computing a "certificate" of $k$-vertex-connectivity as a union of $O(k^2\log{n})$ spanning forests, each on a random subset of $O(n/k)$ vertices, which may be of independent interest.
翻译:在具有(近近)最佳空间的动态流中,我们为顶点连接问题提出了一个流算法:对于任何一美元的顶端图形$G$和任何整数$G$1美元,我们高概率输出的算法是高概率的,无论$G$是否为$K$-顶点在使用$@tilde{O}(knn) 空间的单个通道中连接。我们的上界算法与已知的美元/Omega(kn) 美元(kn) 的空算法相匹配,即使是在只插入的流中(我们将其扩展至本文中的多通算法),也关闭了我们对动态流与只插入的流的理解中剩下的最后差距之一。我们的结果是通过对古哈、麦格雷戈尔和坦奇(PODS 2015) 之前最佳动态流算法进行的新分析而得出,后者获得了用于这一问题的 $wilitede{O}(k_2nn) 空间算算法。这也提供了一种模型独立的算算法,用于计算美元/美元/美元(sleveloplegleaus) coomisal-O2\n_Ok}森林的任意组合。