Kronecker product covariance structure provides an efficient way to modeling the inter-correlations of matrix-variate data. In this paper, we propose testing statistics for Kronecker product covariance matrix based on linear spectral statistics of renormalized sample covariance matrices. Central limit theorem is proved for the linear spectral statistics with explicit formulas for mean and covariance functions, which fills the gap in the literature. We then theoretically justify that the proposed testing statistics have well-controlled sizes and strong powers. To facilitate practical usefulness, we further propose a bootstrap resampling algorithm to approximate the limiting distributions of associated linear spectral statistics. Consistency of the bootstrap procedure is guaranteed under mild conditions. A more general model which allows the existence of noises will also be discussed. In the simulations, the empirical sizes of the proposed testing procedure and its bootstrapped version are close to corresponding theoretical values, while the powers converge to one quickly as the dimension and sample size grow.
翻译:Kronecker 产品共变结构为建模矩阵变异数据之间相互关系的模型提供了一种有效的方法。 在本文中,我们建议根据重新标准化的样本共变矩阵线性光谱统计,对克龙克尔产品共变矩阵进行测试统计。中央限值为线性光谱统计提供了证明,该光谱统计具有中值和共变函数的清晰公式,填补了文献中的空白。然后,我们从理论上证明,拟议的测试统计具有控制良好的大小和强力。为了便于实际使用,我们进一步建议采用靴式采样算法,以近似相关线性线性光谱统计数据的有限分布。在温和条件下,保证了靴式捕捉程序的一致性。还将讨论允许噪音存在的更为普遍的模型。在模拟中,拟议测试程序及其靴形版本的经验大小接近相应的理论价值,而随着尺寸和样本大小的增长,这些能力很快会趋同一个。