The existing image embedding networks are basically vulnerable to malicious attacks such as JPEG compression and noise adding, not applicable for real-world copyright protection tasks. To solve this problem, we introduce a generative deep network based method for hiding images into images while assuring high-quality extraction from the destructive synthesized images. An embedding network is sequentially concatenated with an attack layer, a decoupling network and an image extraction network. The addition of decoupling network learns to extract the embedded watermark from the attacked image. We also pinpoint the weaknesses of the adversarial training for robustness in previous works and build our improved real-world attack simulator. Experimental results demonstrate the superiority of the proposed method against typical digital attacks by a large margin, as well as the performance boost of the recovered images with the aid of progressive recovery strategy. Besides, we are the first to robustly hide three secret images.
翻译:现有的图像嵌入网络基本上容易受到恶意攻击, 如 JPEG 压缩和噪音添加, 不适用于真实世界的版权保护任务。 为了解决这个问题, 我们引入基于基因的深网络方法, 将图像隐藏在图像中, 同时确保从破坏性合成图像中高质量提取。 嵌入网络依次与攻击层、 脱钩网络和图像提取网络相连接。 添加脱钩网络学会从被攻击的图像中提取嵌入的水印。 我们还确定了对面训练的弱点, 以保持先前作品的稳健性, 并构建我们改进过的真实世界攻击模拟器。 实验结果显示, 以大边缘打击典型数字袭击的拟议方法具有优势, 以及借助逐步恢复战略, 回收的图像的性能增强。 此外, 我们第一个强有力地隐藏了三个秘密图像 。