We consider a mono-dimensional two-velocities scheme used to approximate the solutions of a scalar hyperbolic conservative partial differential equation. We prove the convergence of the discrete solution toward the unique entropy solution by first estimating the supremum norm and the total variation of the discrete solution, and second by constructing a discrete kinetic entropy-entropy flux pair being given a continuous entropy-entropy flux pair of the hyperbolic system. We finally illustrate our results with numerical simulations of the advection equation and the Burgers equation.
翻译:我们考虑一种单维双速方案,用于逼近标量双曲型保守型偏微分方程的解。我们通过首先估计离散解的最高点和总变差,然后通过构造离散动力学熵-熵通量对,得到一个连续熵-熵通量对的离散答案,从而证明了离散解向唯一熵解的收敛。最后,我们通过对平流方程和Burgers方程进行数值模拟来说明我们的结果。