Quantized constant envelope (QCE) transmission is a popular and effective technique to reduce the hardware cost and improve the power efficiency of 5G and beyond systems equipped with large antenna arrays. It has been widely observed that the number of quantization levels has a substantial impact on the system performance. This paper aims to quantify the impact of the number of quantization levels on the system performance. Specifically, we consider a downlink single-user multiple-input-single-output (MISO) system with M-phase shift keying (PSK) constellation under the Rayleigh fading channel. We first derive a novel bound on the system symbol error probability (SEP). Based on the derived SEP bound, we characterize the achievable diversity order of the quantized matched filter (MF) precoding strategy. Our results show that full diversity order can be achieved when the number of quantization levels L is greater than the PSK constellation order M, i.e., L>M, only half diversity order is achievable when L=M, and the achievable diversity order is 0 when L<M. Simulation results verify our theoretical analysis.
翻译:量化常量封套(QCE)传输是降低硬件成本、提高安装大型天线阵列的5G系统以外系统功率的流行而有效的技术,人们广泛观察到,量化水平的数量对系统性能有重大影响。本文件旨在量化量化量化水平数量对系统性能的影响。具体地说,我们认为,在Rayleigh 淡化频道下,一个配有M阶段转换键盘(PSK)星座的单用户多投入-单一产出(MISO)系统是一个通俗而有效的技术。我们首先在系统符号误差概率(SEP)上生成了一个新颖的捆绑。根据所得出的 SEP 约束,我们以量化匹配过滤器预编码战略的可实现的多样性顺序为特征。我们的结果表明,当量化水平L比PSK星座秩序M(即L>M)大时,只有一半的多样性顺序可以实现,而可实现的多样性顺序在L=M时是0,而模拟结果验证我们的理论分析时,我们就能实现完全多样化的顺序。