The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hierarchy in detail. We used support vector machine classifier as a benchmark. Our results revealed that human experts using actual specimens yield the lowest classification error ($\overline{CE}=6.1\%$). However, a much faster, automated approach using deep Convolutional Neural Nets comes close to human accuracy ($\overline{CE}=11.4\%$) when a typical flat classification approach is used. Contrary to previous findings in the literature, we find that for machines following a typical flat classification approach commonly used in machine learning performs better than forcing machines to adopt a hierarchical, local per parent node approach used by human taxonomic experts ($\overline{CE}=13.8\%$). Finally, we publicly share our unique dataset to serve as a public benchmark dataset in this field.
翻译:专家分类鉴定的一步目前减缓了许多生物评估的响应时间。 转向更快捷、更廉价的先进机器学习方法仍然受到专家对机器能力和逻辑的怀疑。 在研究中,我们调查了分类专家和机器在准确性和识别逻辑方面的差异。 我们建议采用一种系统方法,利用转移学习模式来利用深革命神经网和转移学习模式,并广泛评价多用途分类数据集,其中含有专门为这一比较而创建的等级标签。 我们还研究不同等级分类层次分类的预测准确性。 我们使用支持矢量机分类器作为基准。 我们的结果显示,使用实际标本的人专家得出了最低分类错误($\overline{CE ⁇ 6.1 ⁇ 1美元 美元 美元 )。 然而,在使用典型的平坦的分类方法时,使用更快捷的自动化方法($( overline{CE ⁇ 11.4美元 美元 美元 ) 。 与以往的研究结果相反,我们发现机器采用典型的固定分类方法,在机器学习中通常使用的是固定的平坦分级分类方法, 而不是将数据作为最后的排序专家使用的方法。