With the advent of continuous health monitoring with wearable devices, users now generate their unique streams of continuous data such as minute-level step counts or heartbeats. Summarizing these streams via scalar summaries often ignores the distributional nature of wearable data and almost unavoidably leads to the loss of critical information. We propose to capture the distributional nature of wearable data via user-specific quantile functions (QF) and use these QFs as predictors in scalar-on-quantile-function-regression (SOQFR). As an alternative approach, we also propose to represent QFs via user-specific L-moments, robust rank-based analogs of traditional moments, and use L-moments as predictors in SOQFR (SOQFR-L). These two approaches provide two mutually consistent interpretations: in terms of quantile levels by SOQFR and in terms of L-moments by SOQFR-L. We also demonstrate how to deal with multi-modal distributional data via Joint and Individual Variation Explained (JIVE) using L-moments. The proposed methods are illustrated in a study of association of digital gait biomarkers with cognitive function in Alzheimer's disease (AD). Our analysis shows that the proposed methods demonstrate higher predictive performance and attain much stronger associations with clinical cognitive scales compared to simple distributional summaries.
翻译:随着使用可磨损装置不断进行健康监测的出现,用户现在产生其独特的连续数据流,如分钟级步数或心跳等。通过缩略图对流流进行总结往往忽视可磨损数据的分布性质,几乎不可避免地导致重要信息丢失。我们提议通过用户特定的量子函数(QF)捕捉可磨损数据的分布性质,并利用这些QFs作为卡路里量化功能回归的预测器。作为一种替代办法,我们还提议通过用户特有的L-moments(JIVE)代表QFs,通过针对用户的L-moments、基于传统时刻的稳健的等级类比,并使用L-moments作为SOQFR(SOQFR-L)的预测器。这两种办法提供了两种相互一致的解释:用SOQFR和SOQFR-L的定量函数(L-SOQFR-L)作为卡路运量的预测器,用这些QQQFR-R-Refer-Region(SO)作为预测器。我们还提议如何通过联合和个人解算(Jive-plicalation (Jive) 解解解析) 使用较强的高级的Slimimalimalimalimalimal commal) 分析模型,用简单分析功能显示我们的拟议方法与SMADADRismalmad 的预测功能。