We consider the computational problem of finding short paths in the skeleton of the perfect matching polytope of a bipartite graph. We prove that unless $P=NP$, there is no polynomial-time algorithm that computes a path of constant length between two vertices at distance two of the perfect matching polytope of a bipartite graph. Conditioned on $P\neq NP$, this disproves a conjecture by Ito, Kakimura, Kamiyama, Kobayashi and Okamoto [SIAM Journal on Discrete Mathematics, 36(2), pp. 1102-1123 (2022)]. Assuming the Exponential Time Hypothesis we prove the stronger result that there exists no polynomial-time algorithm computing a path of length at most $\left(\frac{1}{4}-o(1)\right)\frac{\log N}{\log \log N}$ between two vertices at distance two of the perfect matching polytope of an $N$-vertex bipartite graph. These results remain true if the bipartite graph is restricted to be of maximum degree three. The above has the following interesting implication for the performance of pivot rules for the simplex algorithm on simply-structured combinatorial polytopes: If $P\neq NP$, then for every simplex pivot rule executable in polynomial time and every constant $k \in \mathbb{N}$ there exists a linear program on a perfect matching polytope and a starting vertex of the polytope such that the optimal solution can be reached in two monotone steps from the starting vertex, yet the pivot rule will require at least $k$ steps to reach the optimal solution. This result remains true in the more general setting of pivot rules for so-called circuit-augmentation algorithms.
翻译:我们考虑在极匹配的双部分图的多直径的骨架中找到短路的计算问题。 我们证明, 除非$P=NP$, 否则, 没有一个多边- 时间算法, 计算两个顶端之间在两处的常态长度, 两处的极匹配的双端图。 以 $P\\neq=NP$ 折叠成调, 由 Ito、 Kakimura、 Kamiyama、 Kobayashi 和 Okamoto 的猜想。 除非 $P=NP$, pp. 1102- 1123 (202), 否则, 没有一个多边- 时间算法, 在两处的极匹配的 美元双向数学, 最高级规则的常态计算结果 。 最常态规则的常态, 最常态规则的常态, 最常态的常态, 在双向的双向的双向, 在双向的双向的双向, 最晚的运行。