Lyrics play a significant role in conveying the song's mood and are information to understand and interpret music communication. Conventional natural language processing approaches use translation of the Hindi text into English for analysis. This approach is not suitable for lyrics as it is likely to lose the inherent intended contextual meaning. Thus, the need was identified to develop a system for Devanagari text analysis. The data set of 300 song lyrics with equal distribution in five different moods is used for the experimentation. The proposed system performs contextual mood analysis of Hindi song lyrics in Devanagari text format. The contextual analysis is stored as a knowledge base, updated using an incremental learning approach with new data. Contextual knowledge graph with moods and associated important contextual terms provides the graphical representation of the lyric data set used. The testing results show 64% accuracy for the mood prediction. This work can be easily extended to applications related to Hindi literary work such as summarization, indexing, contextual retrieval, context-based classification and grouping of documents.


翻译:传统自然语言处理方法使用印地语文字翻译成英文进行分析。这一方法不适合歌词,因为它有可能失去固有的背景含义。因此,确定需要开发Devanagari文字分析系统。实验中使用了在五个不同情绪中平等分布的300个歌曲歌词数据集。拟议系统以Devanagari文字格式对印地语歌词进行背景情绪分析。背景分析存储为知识库,使用一种渐进学习方法与新数据进行更新。带有情绪和相关重要背景术语的背景知识图提供了所使用词类数据集的图形表述。测试结果显示情绪预测64%的准确性。这项工作很容易扩大到与印地语文学工作有关的应用,如概括、索引、背景检索、背景分类和文件分组。

0
下载
关闭预览

相关内容

【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CCF ADL92:自然语言理解:新学习方法及知识
中国计算机学会
5+阅读 · 2018年8月21日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CCF ADL92:自然语言理解:新学习方法及知识
中国计算机学会
5+阅读 · 2018年8月21日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员