Despite the prominence of neural abstractive summarization models, we know little about how they actually form summaries and how to understand where their decisions come from. We propose a two-step method to interpret summarization model decisions. We first analyze the model's behavior by ablating the full model to categorize each decoder decision into one of several generation modes: roughly, is the model behaving like a language model, is it relying heavily on the input, or is it somewhere in between? After isolating decisions that do depend on the input, we explore interpreting these decisions using several different attribution methods. We compare these techniques based on their ability to select content and reconstruct the model's predicted token from perturbations of the input, thus revealing whether highlighted attributions are truly important for the generation of the next token. While this machinery can be broadly useful even beyond summarization, we specifically demonstrate its capability to identify phrases the summarization model has memorized and determine where in the training pipeline this memorization happened, as well as study complex generation phenomena like sentence fusion on a per-instance basis.
翻译:尽管神经抽象总和模型具有显著性,但我们对这些模型如何实际形成摘要以及如何理解其决定的来源知之甚少。 我们提出一个两步方法来解释总和模型决定。 我们首先分析模型的行为,将每个解码器决定的完整模型划为几代模式之一: 大致上,该模型是否像语言模型一样表现得非常依赖输入,是严重依赖输入,还是介于两者之间? 在孤立了依赖输入的决定之后,我们利用几种不同的归因方法来解释这些决定。 我们根据这些技术选择内容的能力来比较这些技术,并从输入的扰动中重建模型的预测符号,从而揭示突出的属性对于下一代的生成是否真正重要。虽然这一机制可以广泛有用,甚至超越了归因,但我们具体地展示了它确定归因模型的短语的能力,并确定了在培训管道中这种混合的发生地点,以及研究复杂的一代现象,例如按每次插入的句子融合。