Machine learning (ML) algorithms are increasingly important for the success of products and services, especially considering the growing amount and availability of data. This also holds for areas handling sensitive data, e.g. applications processing medical data or facial images. However, people are reluctant to pass their personal sensitive data to a ML service provider. At the same time, service providers have a strong interest in protecting their intellectual property and therefore refrain from publicly sharing their ML model. Fully homomorphic encryption (FHE) is a promising technique to enable individuals using ML services without giving up privacy and protecting the ML model of service providers at the same time. Despite steady improvements, FHE is still hardly integrated in today's ML applications. We introduce HE-MAN, an open-source two-party machine learning toolset for privacy preserving inference with ONNX models and homomorphically encrypted data. Both the model and the input data do not have to be disclosed. HE-MAN abstracts cryptographic details away from the users, thus expertise in FHE is not required for either party. HE-MAN 's security relies on its underlying FHE schemes. For now, we integrate two different homomorphic encryption schemes, namely Concrete and TenSEAL. Compared to prior work, HE-MAN supports a broad range of ML models in ONNX format out of the box without sacrificing accuracy. We evaluate the performance of our implementation on different network architectures classifying handwritten digits and performing face recognition and report accuracy and latency of the homomorphically encrypted inference. Cryptographic parameters are automatically derived by the tools. We show that the accuracy of HE-MAN is on par with models using plaintext input while inference latency is several orders of magnitude higher compared to the plaintext case.
翻译:机器学习(ML)算法对于产品和服务的成功越来越重要,特别是考虑到数据数量和可得性不断增长,对于产品和服务的成功来说尤其如此。对于处理敏感数据的领域,例如处理医疗数据或面部图像的应用等,这也保留着。然而,人们不愿意将个人敏感数据传递给ML服务供应商。与此同时,服务提供商对保护其知识产权有着浓厚的兴趣,因此不公开分享其ML模型。完全同质加密(FHE)是一种很有希望的技术,使个人能够使用ML服务而不放弃隐私,同时保护服务供应商ML模型。尽管不断改进,FHE仍然很少被纳入当今的 ML应用中。我们引入了HE-MAN,这是一个开放源的两方机器学习工具,用于保护与ONX模型和同质加密数据之间的隐私推断。无论模型和输入数据都不必公开披露。HE-MEL的精度,因此FHE的精度并不要求任何一方放弃隐私,因此需要FHEE的精度,而安全则依赖于FHEE计划的基础。现在我们引入了HAN-MAL的精度,我们将两种普通的精度的精度的精度的精度数据系统,而没有使用SAL-CLL的精度的精度,我们用SAL的精度模型的精度的精度的精度的精度,而将运行模型的精度的精度的精度的精度的精度的精度的精度的精度的精度,我们用细度的精度的精度的精度的精度,而用法度,而用在SLLVLVAL-CLVLVLVLVIFL的精度的精度的精度的精度的精度的精度,我们的精度的精度的精度的精度的精度的精度的精度,我们用在SAL-L-L-LAFAL-CFAL-CFAL-LVAL-SAL-LVAL-L-L-L-L-L-LIFAL-LAFAL-L-L-SAL-SAL-SAL-SAL-L-L-L-L-L-L-L-L-L-L-L-L-L-L