Modern utility-scale wind turbines are equipped with a Supervisory Control And Data Acquisition (SCADA) system gathering vast amounts of operational data that can be used for failure analysis and prediction to improve operation and maintenance of turbines. We analyse high freqeuency SCADA-data from an offshore windpark and evaluate Pearson correlation matrices for a variety of observables with a moving time window. This renders possible an asessment of non-stationarity in mutual dependcies of different types of data. Drawing from our experience in other complex systems, such as financial markets and traffic, we show this by employing a hierarchichal $k$-means clustering algorithm on the correlation matrices. The different clusters exhibit distinct typical correlation structures to which we refer as states. Looking first at only one and later at multiple turbines, the main dependence of these states is shown to be on wind speed. In accordance, we identify them as operational states arising from different settings in the turbine control system based on the available wind speed. We model the boundary wind speeds seperating the states based on the clustering solution. This allows the usage of our methodology for failure analysis or prediction by sorting new data based on wind speed and comparing it to the respective operational state, thereby taking the non-stationarity into account.


翻译:现代通用型风力涡轮机配备了监督控制和数据采集系统,该系统收集了大量业务数据,可用于对故障进行分析和预测,以改进涡轮机的运行和保养。我们分析离岸风场的高超优度SCADA数据,并评估与移动时间窗口不同观测的Pearson相关矩阵。这使得不同类型数据在相互依赖性方面有可能出现不常态现象。我们从金融市场和交通等其他复杂系统的经验中吸取经验,在相关矩阵中采用等级值$-平均值组合算法来显示这一点。不同的组群展示了我们称之为状态的典型典型相关结构。先看多个涡轮机,这些状态的主要依赖度显示是风速。我们根据现有风速确定涡轮机控制系统不同环境产生的运行状态。我们根据集群解决方案对边界风速进行模拟,对各州进行分辨。这样就可以使用我们的方法进行故障分析或预测,从而根据新风速对新运行状态进行对比,从而将新运行速度和新运行状态进行比较。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员