We investigate the effect of omnipresent cloud storage on distributed computing. We specify a network model with links of prescribed bandwidth that connect standard processing nodes, and, in addition, passive storage nodes. Each passive node represents a cloud storage system, such as Dropbox, Google Drive etc. We study a few tasks in this model, assuming a single cloud node connected to all other nodes, which are connected to each other arbitrarily. We give implementations for basic tasks of collaboratively writing to and reading from the cloud, and for more advanced applications such as matrix multiplication and federated learning. Our results show that utilizing node-cloud links as well as node-node links can considerably speed up computations, compared to the case where processors communicate either only through the cloud or only through the network links. We provide results for general directed graphs, and for graphs with ``fat'' links between processing nodes. For the general case, we provide optimal algorithms for uploading and downloading files using flow techniques. We use these primitives to derive algorithms for \emph{combining}, where every processor node has an input value and the task is to compute a combined value under some given associative operator. In the case of fat links, we assume that links between processors are bidirectional and have high bandwidth, and we give near-optimal algorithms for any commutative combining operator (such as vector addition). For the task of matrix multiplication (or other non-commutative combining operators), where the inputs are ordered, we present sharp results in the simple ``wheel'' network, where procesing nodes are arranged in a ring, and are all connected to a single cloud node.


翻译:我们调查分布式计算中天文云存储的影响。 我们指定了连接标准处理节点和被动存储节点的指定带宽链接的网络模型。 每个被动节点代表云存储系统, 如 Drobox、 Google驱动器等。 我们研究模型中的一些任务, 假设与其他所有节点连接的单一云节点, 这些节点是任意连接的。 对于一般案例, 我们为从云层上和从云层上进行协作写作和读取的基本任务, 以及更先进的应用程序, 如矩阵倍增和粘合学习。 我们的结果显示, 使用节点和节点连接连接的节点链接以及节点和节点连接可以大大加快计算速度, 相比之下, 处理者只能通过云端或仅通过网络链接进行交流。 我们为通用的图表提供结果, 与处理节点之间连接的图表。 对于一般案例, 我们为上传和从云中下载的文件提供了最优化的算法, 我们使用这些原始算法来为某些 emph{combing 以及节点连接起来 。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
5+阅读 · 2019年8月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员