We introduce a risk-aware multi-objective Traveling Salesperson Problem (TSP) variant, where the robot tour cost and tour reward have to be optimized simultaneously. The robot obtains reward along the edges in the graph. We study the case where the rewards and the costs exhibit diminishing marginal gains, i.e., are submodular. Unlike prior work, we focus on the scenario where the costs and the rewards are uncertain and seek to maximize the Conditional-Value-at-Risk (CVaR) metric of the submodular function. We propose a risk-aware greedy algorithm (RAGA) to find a bounded-approximation algorithm. The approximation algorithm runs in polynomial time and is within a constant factor of the optimal and an additive term that depends on the optimal solution. We use the submodular function's curvature to improve approximation results further and verify the algorithm's performance through simulations.
翻译:我们引入了一个风险意识多目标旅行销售人员问题变体, 机器人旅行成本和旅游奖赏必须同时优化。 机器人沿着图表的边缘获得奖赏。 我们研究奖赏和成本显示减少边际收益的情况, 也就是说, 是亚模式的。 与先前的工作不同, 我们侧重于成本和收益不确定的情景, 并力求最大限度地提高亚模式功能的有条件- 价值- 风险( CVaR) 度量度。 我们建议了一种风险意识贪婪算法( RAGA), 以找到一个捆绑的配方算法( RAGA ) 。 近似算法在多元时间运行, 并且处于一个取决于最佳解决方案的最佳和添加术语的不变因素之内。 我们使用亚模式函数的曲线来进一步改进近似效果, 通过模拟来验证算法的性表现 。