Recent years have seen rapid advances in the data-driven analysis of dynamical systems based on Koopman operator theory and related approaches. On the other hand, low-rank tensor product approximations -- in particular the tensor train (TT) format -- have become a valuable tool for the solution of large-scale problems in a number of fields. In this work, we combine Koopman-based models and the TT format, enabling their application to high-dimensional problems in conjunction with a rich set of basis functions or features. We derive efficient algorithms to obtain a reduced matrix representation of the system's evolution operator starting from an appropriate low-rank representation of the data. These algorithms can be applied to both stationary and non-stationary systems. We establish the infinite-data limit of these matrix representations, and demonstrate our methods' capabilities using several benchmark data sets.
翻译:近年来,在根据Koopman操作员理论和相关方法对动态系统进行数据驱动分析方面取得了迅速的进展;另一方面,低调高压产品近似值 -- -- 特别是高压列车(TT)格式 -- -- 已成为解决若干领域大规模问题的宝贵工具;在这项工作中,我们将Koopman模型和TT格式结合起来,使这些模型和TT格式能够与一整套丰富的基础功能或特征一起应用于高层次问题;我们从数据的适当低级别代表中获取高效算法,以获得系统演变操作员的较低矩阵表示法;这些算法可以适用于固定和非固定系统;我们为这些矩阵表述设定无限的数据限制,并利用若干基准数据集展示我们的方法能力。