Cloud service providers are distributing data centers geographically to minimize energy costs through intelligent workload distribution. With increasing data volumes in emerging cloud workloads, it is critical to factor in the network costs for transferring workloads across data centers. For geo-distributed data centers, many researchers have been exploring strategies for energy cost minimization and intelligent inter-data-center workload distribution separately. However, prior work does not comprehensively and simultaneously consider data center energy costs, data transfer costs, and data center queueing delay. In this paper, we propose a novel game theory-based workload management framework that takes a holistic approach to the cloud operating cost minimization problem by making intelligent scheduling decisions aware of data transfer costs and the data center queueing delay. Our framework performs intelligent workload management that considers heterogeneity in data center compute capability, cooling power, interference effects from task co-location in servers, time-of-use electricity pricing, renewable energy, net metering, peak demand pricing distribution, and network pricing. Our simulations show that the proposed game-theoretic technique can minimize the cloud operating cost more effectively than existing approaches.
翻译:云层服务供应商正在地理上分配数据中心,以通过智能工作量分配最大限度地减少能源成本。随着新兴云层工作量中数据量的增加,在网络成本中计入跨数据中心转移工作量的成本至关重要。对于地理分布的数据中心,许多研究人员一直在分别探索能源成本最小化和智能的数据中心间工作量分配战略。然而,先前的工作并没有全面、同时考虑数据中心能源成本、数据传输成本和数据中心排队延误。在本文中,我们提出了一个基于理论的新颖的工作量管理框架,该框架对云运行成本最小化问题采取整体方法,对数据传输成本和数据中心排队延误做出明智的时间安排决定。我们的框架实施智能工作量管理,其中考虑到数据中心的配置能力、冷却电能、服务器任务合用产生的干扰效应、时间使用电定价、可再生能源、净计量、峰值需求定价分配和网络定价。我们的模拟显示,拟议的游戏理论技术可以比现有方法更有效地最大限度地降低云层运行成本。