We present a specialized scenario generation method that utilizes forecast information to generate scenarios for day-ahead scheduling problems. In particular, we use normalizing flows to generate wind power scenarios by sampling from a conditional distribution that uses wind speed forecasts to tailor the scenarios to a specific day. We apply the generated scenarios in a stochastic day-ahead bidding problem of a wind electricity producer and analyze whether the scenarios yield profitable decisions. Compared to Gaussian copulas and Wasserstein-generative adversarial networks, the normalizing flow successfully narrows the range of scenarios around the daily trends while maintaining a diverse variety of possible realizations. In the stochastic day-ahead bidding problem, the conditional scenarios from all methods lead to significantly more stable profitable results compared to an unconditional selection of historical scenarios. The normalizing flow consistently obtains the highest profits, even for small sets scenarios.
翻译:我们提出一种专门的情景生成方法,利用预测信息为日常日程安排问题提出假想。特别是,我们使用正常流量来生成风能假想,从有条件的分配中取样,使用风速预测将假想情况调整到特定日期。我们将生成的假想应用于风电生产商的随机的日常投标问题,并分析这些假想是否产生有利决定。与高萨可口可乐和瓦塞尔斯坦-遗传性对抗网络相比,正常流量成功地缩小了围绕日常趋势的各种假想的范围,同时保持了各种不同的可能的实现。在零碎的日头投标问题中,所有方法的有条件的假想都导致比无条件选择历史假想都更稳定的盈利结果。正常流动始终能获得最高利润,即使是对于小规模的假想也如此。