Decoding brain signals can not only reveal Metaverse users' expectations but also early detect error-related behaviors such as stress, drowsiness, and motion sickness. For that, this article proposes a pioneering framework using wireless/over-the-air Brain-Computer Interface (BCI) to assist creation of virtual avatars as human representation in the Metaverse. Specifically, to eliminate the computational burden for Metaverse users' devices, we leverage Wireless Edge Servers (WES) that are popular in 5G architecture and therein URLLC, enhanced broadband features to obtain and process the brain activities, i.e., electroencephalography (EEG) signals (via uplink wireless channels). As a result, the WES can learn human behaviors, adapt system configurations, and allocate radio resources to create individualized settings and enhance user experiences. Despite the potential of BCI, the inherent noisy/fading wireless channels and the uncertainty in Metaverse users' demands and behaviors make the related resource allocation and learning/classification problems particularly challenging. We formulate the joint learning and resource allocation problem as a Quality-of-Experience (QoE) maximization problem that takes into the latency, brain classification accuracy, and resources of the system. To tackle this mixed integer programming problem, we then propose two novel algorithms that are (i) a hybrid learning algorithm to maximize the user QoE and (ii) a meta-learning algorithm to exploit the neurodiversity of the brain signals among multiple Metaverse users. The extensive experiment results with different BCI datasets show that our proposed algorithms can not only provide low delay for virtual reality (VR) applications but also can achieve high classification accuracy for the collected brain signals.
翻译:本文提出了一种开创性的框架,使用无线/无线接口脑机接口(BCI)辅助在元宇宙中创建人物角色。具体来说,为了消除元宇宙用户设备的计算负担,我们利用在5G架构中和其中URLLC和增强宽带功能中广泛使用的无线边缘服务器(WES)来获取和处理脑活动,即脑电图(EEG)信号(通过上行无线信道)。结果,WES可以学习人类行为,适应系统配置,并分配无线资源以创建个性化设置,并提高用户体验。尽管BCI有潜力,但天然的噪声/衰落无线通道以及存在于元宇宙用户需求和行为中的不确定性使得相关的资源分配和学习/分类问题尤其具有挑战性。我们将联合学习和资源分配问题公式化为一个最大化质量体验(QoE)的问题,考虑到延迟、脑分类准确性和系统资源。为了解决这个混合整数编程问题,我们提出了两种新颖的算法,一个是混合学习算法,以最大化用户QoE,另一个是元学习算法,以利用多个元宇宙用户之间脑信号的神经多样性。不同BCI数据集的广泛实验结果显示,我们提出的算法不仅可以为虚拟现实(VR)应用程序提供低延迟,而且可以实现对收集到的脑信号的高分类精度。