We investigate the famous Tchentzov's projection density statistical estimation in order to deduce the exponential decreasing tail of distribution for the natural normalized deviation. We modify these estimations assuming the square integrability of estimated function, to make it recursive form, which is more convenient for applications, however they have at the same speed of convergence as the for the classical ones in the composite Hilbert space norm.
翻译:我们调查了著名的Tchentzov预测密度统计估计,以推断自然正常化偏差的分布的指数性下降尾巴。我们假设估计功能的正方形融合性,修改这些估计,使其具有循环形式,这对应用更为方便,但是它们与复合Hilbert空间规范中的古典标准具有相同的趋同速度。