In this memoir, we develop a general framework which allows for a simultaneous study of labeled and unlabeled near alignment data problems in $\mathbb R^D$ and the Whitney near isometry extension problem for discrete and non-discrete subsets of $\mathbb R^D$ with certain geometries. In addition, we survey related work of ours on clustering, dimension reduction, manifold learning, vision as well as minimal energy partitions, discrepancy and min-max optimization. Numerous open problems in harmonic analysis, computer vision, manifold learning and signal processing connected to our work are given. A significant portion of the work in this memoir is based on joint research with Charles Fefferman in the papers [48], [49], [50], [51].
翻译:在这个回忆录中,我们制定了一个总体框架,以便能够同时研究以美元和惠特尼附近的等离散和非分解子集(美元)的贴标签和未贴标签的近吻数据问题,并与某些地理特征同时研究。此外,我们还调查了我们关于集群、尺寸减少、多重学习、视觉以及最小能源分区、差异和微积分优化等方面的相关工作。在与我们的工作有关的口音分析、计算机视觉、多重学习和信号处理方面出现了许多公开的问题。本备忘录中很大一部分工作是基于与查尔斯·费弗曼在论文上的联合研究([48]、[49]、[50]、[51]、[51]。