Modern computer vision applications suffer from catastrophic forgetting when incrementally learning new concepts over time. The most successful approaches to alleviate this forgetting require extensive replay of previously seen data, which is problematic when memory constraints or data legality concerns exist. In this work, we consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL), where an incremental learning agent must learn new concepts over time without storing generators or training data from past tasks. One approach for DFCIL is to replay synthetic images produced by inverting a frozen copy of the learner's classification model, but we show this approach fails for common class-incremental benchmarks when using standard distillation strategies. We diagnose the cause of this failure and propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation, and show that our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks. Our method even outperforms several standard replay based methods which store a coreset of images.
翻译:在逐渐学习新概念时,现代计算机视觉应用会遭受灾难性的遗忘。 减轻这种忘却的最成功方法要求大量重现先前看到的数据,而当记忆限制或数据合法性问题存在时,这是问题所在。 在这项工作中,我们考虑到无数据类强化学习(DFCIL)这一影响较大的问题,在这个问题上,一个递增的学习代理机构必须长期学习新概念,而不必储存发电机或从过去的任务中培训数据。 DFCIL的一个方法是重新播放通过反转一个冷冻的学习者分类模型复制出来的合成图像,但我们显示,在使用标准蒸馏战略时,这个方法对于共同的类级强化基准来说是失败的。我们诊断了这一失败的原因,并为DFCIL提出了一个全新的递增精益化战略,贡献了经过修改的跨热带培训和重要性加权特征蒸馏,并表明我们的方法的结果是,与SOTA DFCIL 通用分类基准方法相比,最终任务准确度(绝对差异)增加了25.1%。我们的方法甚至比一些基于标准重置图像的重置法。