A powerful statistical interpolating concept, which we call \emph{fully lifted} (fl), is introduced and presented while establishing a connection between bilinearly indexed random processes and their corresponding fully decoupled (linearly indexed) comparative alternatives. Despite on occasion very involved technical considerations, the final interpolating forms and their underlying relations admit rather elegant expressions that provide conceivably highly desirable and useful tool for further studying various different aspects of random processes and their applications. We also discuss the generality of the considered models and show that they encompass many well known random structures and optimization problems to which then the obtained results automatically apply.
翻译:暂无翻译