An important problem in analysis of neural data is to characterize interactions across brain regions from high-dimensional multiple-electrode recordings during a behavioral experiment. Lead-lag effects indicate possible directional flows of neural information, but they are often transient, appearing during short intervals of time. Such non-stationary interactions can be difficult to identify, but they can be found by taking advantage of the replication structure inherent to many neurophysiological experiments. To describe non-stationary interactions between replicated pairs of high-dimensional time series, we developed a method of estimating latent, non-stationary cross-correlation. Our approach begins with an extension of probabilistic CCA to the time series setting, which provides a model-based interpretation of multiset CCA. Because the covariance matrix describing non-stationary dependence is high-dimensional, we assume sparsity of cross-correlations within a range of possible interesting lead-lag effects. We show that the method can perform well in realistic settings and we apply it to 192 simultaneous local field potential (LFP) recordings from prefrontal cortex (PFC) and visual cortex (area V4) during a visual memory task. We find lead-lag relationships that are highly plausible, being consistent with related results in the literature.


翻译:神经数据分析中的一个重要问题是,从行为实验期间的高维多电子记录中确定大脑区域之间的相互作用特征。铅渣效应表明神经信息可能的方向流动,但往往是瞬时的,在短时间间隔中出现。这种非静止的相互作用可能难以识别,但可以通过利用许多神经生理实验固有的复制结构找到。为了描述高维时间序列复制的对子之间的非静止相互作用,我们开发了一种方法来估计潜伏、非静止的横向交叉关系。我们的方法始于将概率性共同评估扩展至时间序列设置,该方法为多位共同评估提供了基于模型的解释。由于描述非静止依赖性的共变式矩阵是高度的,我们假设交叉关系在一系列可能的令人感兴趣的铅-炉效应中是宽广的。我们表明该方法在现实环境中可以很好地发挥作用,我们将这种方法应用于192个同时的实地潜在(LFP)记录。我们的方法开始于时间序列中将概率性共同评估扩展为时间序列设置,它提供了一种基于模型的解释。由于描述非静止依赖性共同国家评估的模型,因此在视觉-直观文献中发现了高度的图像关系。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
29+阅读 · 2021年2月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
46+阅读 · 2020年11月13日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
已删除
将门创投
9+阅读 · 2017年10月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
0+阅读 · 2021年6月25日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
已删除
将门创投
9+阅读 · 2017年10月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员