Having been studied since long by statisticians, multivariate median concepts found their way into the image processing literature in the course of the last decades, being used to construct robust and efficient denoising filters for multivariate images such as colour images but also matrix-valued images. Based on the similarities between image and geometric data as results of the sampling of continuous physical quantities, it can be expected that the understanding of multivariate median filters for images provides a starting point for the development of shape processing techniques. This paper presents an overview of multivariate median concepts relevant for image and shape processing. It focusses on their mathematical principles and discusses important properties especially in the context of image processing.


翻译:经过统计学家长期研究后,过去几十年中,多变量中位概念进入图像处理文献,用于为彩色图像等多变量图像以及矩阵估值图像构建稳健高效的除尘过滤器。根据图像和几何数据之间的相似性,作为连续物理量抽样的结果,可以预计,对图像多变量中位过滤器的理解为形状处理技术的发展提供了一个起点。本文件概述了与图像和形状处理相关的多变量中位概念,侧重于其数学原理,并讨论了重要属性,特别是在图像处理方面。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员