We provide a rigorous mathematical treatment to the crowding issue in data visualization when high dimensional data sets are projected down to low dimensions for visualization. By properly adjusting the capacity of high dimensional balls, our method makes right enough room to prepare for the embedding. A key component of the proposed method is an estimation of the correlation dimension at various scales which reflects the data density variation. The proposed adjustment to the capacity applies to any distance (Euclidean, geodesic, diffusion) and can potentially be used in many existing methods to mitigate the crowding during the dimension reduction. We demonstrate the effectiveness of the new method using synthetic and real datasets.


翻译:当高维数据集被预测到可视化的低维度时,我们为数据可视化中的挤积问题提供了严格的数学处理方法。通过适当调整高维球的能力,我们的方法为嵌入提供了适当的准备空间。拟议方法的一个关键组成部分是对反映数据密度变化的不同尺度的关联层面进行估计。对能力的拟议调整适用于任何距离(Euclidean、大地测量学、扩散),并有可能用于许多现有方法,以缓解在缩小维度过程中的挤积。我们用合成和真实数据集展示了新方法的有效性。

0
下载
关闭预览

相关内容

数据可视化是关于数据之视觉表现形式的研究。
专知会员服务
15+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员