Although there is no doubt that multi-parameter persistent homology is a useful tool to analyse multi-variate data, efficient ways to compute these modules are still lacking in the available topological data analysis toolboxes. Other issues such as interpretation and visualization of the output remain difficult to solve. Software visualizing multi-parameter persistence diagrams is currently only available for 2-dimensional persistence modules. One of the simplest invariants for a multi-parameter persistence module is its rank invariant, defined as the function that counts the number of linearly independent homology classes that live in the filtration through a given pair of values of the multi-parameter. We propose a step towards interpretation and visualization of the rank invariant for persistence modules for any given number of parameters. We show how discrete Morse theory may be used to compute the rank invariant, proving that it is completely determined by its values at points whose coordinates are critical with respect to a discrete Morse gradient vector field. These critical points partition the set of all lines of positive slope in the parameter space into equivalence classes, such that the rank invariant along lines in the same class are also equivalent. We show that we can deduce all persistence diagrams of the restrictions to the lines in a given class from the persistence diagram of the restriction to a representative in that class.


翻译:虽然毫无疑问多参数持久性同质学是分析多变量数据的有用工具,但现有表层数据分析工具箱中仍然缺乏计算这些模块的有效方法。其它问题,如输出的判读和可视化,仍然难以解决。软件多参数持久性图目前只为二维持久性模块提供。多参数持久性模块的最简单变量之一是其等级,定义为计算通过多参数的一对数值过滤在过滤中生活的线性独立同质类数的函数。我们建议采取步骤,对任一参数的持久性模块的变异等级进行解释和可视化。我们表明如何使用离散的摩斯持久性理论来计算变异等级,证明它完全取决于其值的点与离散的摩斯梯度矢量字段的坐标。这些临界点将参数空间中的所有正斜度线与等量类相隔开,因此,在任何参数的等值中,我们从等同的等同级到等同的等同级图中,我们从等同的等级到等同的等同的等同级。

0
下载
关闭预览

相关内容

【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
8+阅读 · 2017年7月21日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员