Randomize-then-optimize (RTO) is widely used for sampling from posterior distributions in Bayesian inverse problems. However, RTO may be computationally intensive for complexity problems due to repetitive evaluations of the expensive forward model and its gradient. In this work, we present a novel strategy to substantially reduce the computation burden of RTO by using a goal-oriented deep neural networks (DNN) surrogate approach. In particular, the training points for the DNN-surrogate are drawn from a local approximated posterior distribution, and it is shown that the resulting algorithm can provide a flexible and efficient sampling algorithm, which converges to the direct RTO approach. We present a Bayesian inverse problem governed by a benchmark elliptic PDE to demonstrate the computational accuracy and efficiency of our new algorithm (i.e., DNN-RTO). It is shown that with our algorithm, one can significantly outperform the traditional RTO.


翻译:由于对昂贵的前方模型及其梯度的重复评价,RTO在计算复杂问题时可能具有很强的复杂性问题。在这项工作中,我们提出了一个新的战略,通过采用面向目标的深神经网络替代方法,大幅度降低RTO的计算负担。特别是,DNN-Surrogate的训练点取自当地近似后方分布,并表明由此产生的算法能够提供灵活而有效的取样算法,与直接的RTO方法汇合。我们提出了一个由基准椭圆PDE管理的巴耶斯反向问题,以显示我们新算法(即DNN-RTO)的计算精确度和效率。 事实证明,我们的算法可以大大超过传统的RTO。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员