Conventional methods in causal effect inferencetypically rely on specifying a valid set of control variables. When this set is unknown or misspecified, inferences will be erroneous. We propose a method for inferring average causal effects when all potential confounders are observed, but thecontrol variables are unknown. When the data-generating process belongs to the class of acyclical linear structural causal models, we prove that themethod yields asymptotically valid confidence intervals. Our results build upon a smooth characterization of linear directed acyclic graphs. We verify the capability of the method to produce valid confidence intervals for average causal effects using synthetic data, even when the appropriate specification of control variables is unknown.
翻译:在因果关系中,常规方法通常依赖指定一套有效的控制变量。当这一数据集未知或定义错误时,推断将是错误的。当观察到所有潜在混淆者时,我们建议一种计算平均因果关系的方法,但控制变量则未知。当数据生成过程属于周期线性结构因果模型的类别时,我们证明主题产生无现成有效信任间隔。我们的结果建立在线性定向绕行图的平稳定性基础上。我们核实该方法是否有能力利用合成数据产生有效信任间隔,以利用合成数据对平均因果关系产生有效信任,即使控制变量的适当规格不明。