The control problem of the flexible wing aircraft is challenging due to the prevailing and high nonlinear deformations in the flexible wing system. This urged for new control mechanisms that are robust to the real-time variations in the wing's aerodynamics. An online control mechanism based on a value iteration reinforcement learning process is developed for flexible wing aerial structures. It employs a model-free control policy framework and a guaranteed convergent adaptive learning architecture to solve the system's Bellman optimality equation. A Riccati equation is derived and shown to be equivalent to solving the underlying Bellman equation. The online reinforcement learning solution is implemented using means of an adaptive-critic mechanism. The controller is proven to be asymptotically stable in the Lyapunov sense. It is assessed through computer simulations and its superior performance is demonstrated on two scenarios under different operating conditions.
翻译:灵活翼飞机的控制问题之所以具有挑战性,是因为灵活翼系统普遍和高度的非线性变形。这要求建立新的控制机制,以适应机翼空气动力学的实时变异。为灵活的机翼航空结构开发了一个基于增值强化学习过程的在线控制机制。它使用一个无模式的控制政策框架和一个有保障的统一适应性学习架构来解决系统的贝尔曼最佳方程式。一个Riccati方程式的推算和显示等同于解决Bellman基本方程式。在线强化学习解决方案是使用适应-critic 机制实施的。在Lyapunov 意义上,控制器被证明具有微乎其微的稳定性。它通过计算机模拟进行评估,其优异性表现在两种不同的操作条件下得到展示。