We introduce the Membership Degree Min-Max (MD-Min-Max) localisation algorithm as a precise and simple lateration algorithm for indoor localisation. MD-Min-Max is based on the well-known Min-Max algorithm that computes a bounding box to estimate the position. MD-Min-Max uses a Membership Function (MF) based on an estimated error distribution of the distance measurements to improve the precision of Min-Max. The algorithm has similar complexity to Min-Max and can be used for indoor localisation even on small devices, e.g., in Wireless Sensor Networks (WSNs). To evaluate the performance of the algorithm, we compare it with other improvements of the Min-Max algorithm and maximum likelihood estimators, both in simulations and in a large real-world deployment of a WSN. Results show that MD-Min-Max achieves the best performance in terms of average positioning accuracy while keeping computational cost low compared to the other algorithms.


翻译:我们引入成交分级( MD- Min- Max) 本地化算法, 作为室内本地化的精确和简单通缩算法 。 MD- Min- Max 是基于众所周知的Min- Max 算法, 该算法可以计算一个捆绑框来估计位置。 MD- Min- Max 使用一个会员函数( MF), 其依据是距离测量的距离分布估计误差, 以提高 Min- Max 的精确度。 该算法与 Min- Max 相类似, 并可用于室内本地本地化, 甚至在小型设备上, 例如无线感应器网络 。 为了评估算法的性能, 我们将其与其他微量算算法的改进和最大概率估计器的其他改进方法进行比较, 包括在模拟和大规模实际部署 WSNN 中。 结果显示, MD- Min- Max 在平均定位精度方面达到最佳的性能, 同时又保持计算成本低于其他算法。</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月7日
Arxiv
0+阅读 · 2023年5月6日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
Top
微信扫码咨询专知VIP会员