We present two kinds of lowest-order virtual element methods for planar linear elasticity problems. For the first one we use the nonconforming virtual element method with a stabilizing term. It can be interpreted as a modification of the nonconforming Crouzeix-Raviart finite element method as suggested in [22] to the virtual element method. For the second one we use the conforming virtual element for one component of the displacement vector and the nonconforming virtual element for the other. This approach can be seen as an extension of the idea of Kouhia and Stenberg suggested in [23] to the virtual element method. We show that our proposed methods satisfy the discrete Korn's inequality. We also prove that the methods are convergent uniformly for the nearly incompressible case and the convergence rates are optimal.
翻译:我们为平流线性弹性问题提出了两种最低顺序虚拟元素方法。 对于第一种方法,我们使用不兼容的虚拟元素方法以稳定化术语。这可以解释为修改[22] 中建议的不兼容克鲁塞克斯-拉维亚特限制元素方法。对于第二种方法,我们为迁移矢量的一个组成部分使用符合虚拟元素,而另一个则使用不符合虚拟元素。这个方法可以被视为将[23] 中建议的库希亚和斯滕贝格概念延伸至虚拟元素方法。我们表明,我们建议的方法符合离散科恩的不平等。我们还证明,对于几乎不可压缩的情况,这些方法是一致的,而趋同率是最佳的。