Here, we provide a unified framework for numerical analysis of stochastic nonlinear fractional diffusion equation driven by fractional Gaussian noise with Hurst index $H\in(0,1)$. A novel estimate of the second moment of the stochastic integral with respect to fractional Brownian motion is constructed, which greatly contributes to the regularity analyses of the solution in time and space for $H\in(0,1)$. Then we use spectral Galerkin method and backward Euler convolution quadrature to discretize the fractional Laplacian and Riemann-Liouville fractional derivative, respectively. The sharp error estimates of the built numerical scheme are also obtained. Finally, the extensive numerical experiments verify the theoretical results.
翻译:在此, 我们提供一个统一的框架, 用于分析由分数高森噪音和赫斯特指数( 0. 1美元) 驱动的非线性分解方程式的分数分析。 对分数布朗运动的分数综合体的第二个时刻进行新的估计, 这极大地促进了时间和空间对溶液的定期分析( 0. 1美元 ) 。 然后我们使用光谱加列尔金法和后向电动二次振动来分别分离分数拉普拉西亚和里埃曼- 利奥维尔的分解衍生物。 也获得了对构建的数值方法的尖锐错误估计。 最后, 大量的数字实验可以验证理论结果 。