Recently, pre-trained language models (LMs) have achieved strong performance when fine-tuned on difficult benchmarks like SuperGLUE. However, performance can suffer when there are very few labeled examples available for fine-tuning. Pattern Exploiting Training (PET) is a recent approach that leverages patterns for few-shot learning. However, PET uses task-specific unlabeled data. In this paper, we focus on few-shot learning without any unlabeled data and introduce ADAPET, which modifies PET's objective to provide denser supervision during fine-tuning. As a result, ADAPET outperforms PET on SuperGLUE without any task-specific unlabeled data. Our code can be found at https://github.com/rrmenon10/ADAPET.


翻译:最近,经过培训的语文模式(LMS)在微调超级GLUE等困难基准时取得了良好的成绩。然而,当微调的标签例子很少时,业绩就会受到影响。模式开发培训(PET)是最近的一种方法,它利用模式模式进行微量学习。然而,PET使用特定任务未加标签的数据。在本文中,我们把重点放在没有未加标签的数据的微量学习上,并引入了ADAPET,它改变了PET在微调期间提供更密集监督的目标。结果,ADAPET在没有任何特定任务未加标签的数据的情况下,在超大GLUE上优异PET。我们的代码可以在 https://github.com/rmenon10ADAPET 上找到。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年7月10日
专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
32+阅读 · 2021年6月12日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年7月10日
专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
32+阅读 · 2021年6月12日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员